The LDAR Simulator
Flexible simulation of realistic LDAR programs

Thomas Fox
PhD Candidate, University of Calgary

Chris Hugenholtz, Mozhou Gao, Thomas Barchyn
PTAC Methane Emissions Reduction Forum, November 2019
Equivalence framework

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field testing</td>
<td>Methods are independently evaluated at testing facilities</td>
</tr>
<tr>
<td>Simulation modeling</td>
<td>An empirical leak simulator is used to estimate mitigation</td>
</tr>
<tr>
<td>Piloting</td>
<td>Program is implemented and validated in the field</td>
</tr>
<tr>
<td>Full approval</td>
<td>Regulatory LDAR may be discontinued</td>
</tr>
</tbody>
</table>
Draft equivalence framework

Stage

1. **Field testing**
 - Methods are independently evaluated at testing facilities
 - Performance metrics established

2. **Simulation modeling**
 - An empirical leak simulator is used to estimate mitigation
 - Regulator grants probationary approval

3. **Piloting**
 - Program is implemented and validated in the field
 - Regulator grants full approval

Why model?

Simulation is fast, cheap, and reaches across space/time
LDAR-Sim is a flexible modeling framework

Real space, real time, real assets, real producers, real weather

Equivalence demonstration should not only answer: ‘Is it theoretically possible?’
Demonstration should also answer: ‘Is it practically possible?’

LDAR effectiveness depends on context
- Is my facility accessible by truck?
- Is this valley too cloudy for satellite?
- How many OGI cameras are available?
- Can we ignore the one facility far from the others?
What can LDAR-Sim do?

• Emissions mitigation equivalence
• Evaluate and compare policy and regulation
• Identify areas of research
• Estimate costs of programs or policies
• Estimate required cost/performance of new tech
• Produce geospatial visualizations of LDAR regions

• Multi-stakeholder interest and use (regulators, researchers, producers, technology developers, consultants, etc.)
How does LDAR-Sim work?

Multiple companies doing LDAR at once

Each able to deploy multiple agents (crews)

Build world
• Methods
• Agents
• Sites
• Leaks
• Program
How does LDAR-Sim work?

For each day of the simulation...

- Deploy screening methods
- Flag high-emitting sites for follow-up
- Deploy close-range methods
- Conduct repairs
- Tag leaks for repair
- Identify sites to visit
- Add new leaks

Build world
- Methods
- Agents
- Sites
- Leaks
- Program

Reporting
What has LDAR-Sim revealed?
Timing can matter more than sensitivity

Triannual surveys at 500 sites

Method 21 (high sensitivity, slower)

OGI (less sensitive, faster) ⇐ lower emissions!!
Screening follow-up protocols affect outcomes

Protocol 1:

Choose a constant threshold. Always follow up when emissions are above that value.

e.g. all facilities emitting over 5 kg/hour

Protocol 2:

Choose a percentage highest emitting facilities to receive follow-up, even if emissions are low.

e.g. top 5% of highest emitting facilities
Protocol 1: Strict threshold

Protocol 2: Top emitters

Screening follow-up protocols affect outcomes
Facility-scale screening can be expensive...
... especially when venting is present!

Cost at equivalence with **annual** OGI

- Truck program costs
- Aircraft program costs

Follow-up surveys required to achieve equivalence

Annual OGI: $547

Facility-scale screening can be expensive, especially when venting is present!
Sensitivity depends on program and unknowns

Program 1: OGI
- Max precipitation
- Max wind
- Detection limit
- Min survey interval
- Min temperature
- Number of crews
- Reporting delay
- Required surveys
- Survey time

Program 2: MGL
- Follow-up ratio
- Follow-up threshold
- Max precipitation
- Max wind
- Detection limit
- Min survey interval
- Min temperature
- Number of crews
- Reporting delay
- Required surveys
- Survey time

Global parameters

Program
- Max workday
- Time offsite (O)
- Time offsite (S)
- Repair delay
- Leak counts (O)
- Leak counts (S)
- Leak production rate
- Leak rates (O)
- Leak rates (S)

Binary
- Daylight
- Operator
- Venting

Conditional
- Operator bonus
- Operator strength
- Site rates (O)
- Site rates (S)
Final notes & take-aways

• Emerging hypotheses
 • Context is essential; No solution is universal
 • Explicit equivalence targets can improve clarity
 • Vented emissions may be a big problem under current regs
 • Screening + follow-up (two-visit programs) can be expensive

• Many large uncertainties remain
 • Areas of research: leak lifecycle, method performance in context
 • More data is needed! Enable producers to share anonymously?

LDAR-Sim going public soon... use it and be in touch!